domingo, 3 de marzo de 2013

2º bachillerato CT. Resolución de límites. Indeterminación del tipo cero por infinito.

Tras el descanso de semana blanca retomamos el estudio del bloque de análisis.

Para comenzar os dejo unos apuntes sobre resolución de límites donde aparece la indeterminación cero por infinito. Indeterminación cero por infinito

La indeterminación cero por infinito Indeterminación cero por infinito viene generada por una expresión del tipo

Límite del producto de dos funciones

  donde por ejemplo,

 Límite de función cero y Límite de función infinito.


La expresión se puede transformar de 2 maneras:

1.
Primera transformación de la indeterminación cero por infinito
 llegamos a una indeterminación cero entre cero Indeterminación cero entre cero.



2.
Segunda transformación de la indeterminación cero por infinito
llegamos a una indeterminación infinito entre infinito Indeterminación infinito entre infinito.


Ejemplo: Calcular el límite

 Límite de ejemplo 18

Si evaluamos el límite se trata de una indeterminación cero por infinito Indeterminación cero por infinito. Optamos por la segunda transformación:

Paso 1 de la resolución del ejemplo 18
Y llegamos a una indeterminación infinito entre infinito Indeterminación infinito entre infinito a la que aplicamos la regla de L’Hôpital.
Paso 2 de la resolución del ejemplo 18


Paso 3 de la resolución del ejemplo 18


Para una explicación más detallada podéis ver el siguiente video:
Video explicativo. Límites tipo cero por infinito.

Nota: Buscando este video vi otros del mismo autor, creo que podrían seros de gran ayudar porque hace un recorrido por muchos de los puntos claves de nuestra asignatura. Las explicaciones son muy claras y resuelve paso a paso a un ritmo lento para que todo quede muy claro.
Os dejo el enlace a la página web:
http://www.unicoos.com

En este enlace tenéis ordenados todos los videos sobre límites:
Videos explicativos. Límites.